Brain manganese concentrations in rats following manganese tetroxide inhalation are unaffected by dietary manganese intake.

نویسندگان

  • David C Dorman
  • Melanie F Struve
  • Brian A Wong
چکیده

Manganese-deficient individuals have decreased manganese elimination. This observation has prompted suggestions that relative manganese deficiency may increase the risk for manganese neurotoxicity following inhalation exposure. The objective of this study was to determine whether dietary manganese intake influences the pharmacokinetics of inhaled manganese tetroxide (Mn3O4). Postnatal day (PND) 10 rats were placed on either a low (2 ppm), sufficient (10 ppm), or high-normal (100 ppm) manganese diet for 2 months. Beginning on PND 77 +/- 2, male littermates were exposed 6 h per day for 14 consecutive days to 0, 0.042, or 0.42 mg Mn3O4/m3. End-of-exposure tissue manganese concentrations and whole-body 54Mn elimination rates were determined. Tissue manganese concentrations were dependent on the dietary intake of manganese, thus confirming that altered hepatic manganese disposition or metabolism occurred. Male rats given 100 ppm manganese diet developed increased manganese concentrations in the femur, liver, and bile and had elevated whole-body 54Mn clearance rates when compared to animals given 2 ppm manganese diet. Male rats exposed to 0.42 mg Mn3O4/m3 had increased manganese concentrations in the olfactory bulb, lung, liver, and bile when compared to air-exposed male rats. A significant interaction between the concentration of inhaled Mn3O4 and dietary manganese level was observed only with the end-of-exposure liver manganese concentration. Our results indicate that animals maintained on either a manganese-deficient or high manganese diet do not appear to be at increased risk for elevated brain manganese concentrations following inhalation exposure to high levels of Mn3O4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue manganese concentrations in lactating rats and their offspring following combined in utero and lactation exposure to inhaled manganese sulfate.

There is little information regarding the tissue distribution of manganese in neonates following inhalation. This study determined tissue manganese concentrations in lactating CD rats and their offspring following manganese sulfate (MnSO4) aerosol inhalation. Except for the period of parturition, dams and their offspring were exposed to air or MnSO4 (0.05, 0.5, or 1 mg Mn/m3) for 6 h/day, 7 day...

متن کامل

Pharmacokinetic evaluation of the equivalency of gavage, dietary, and drinking water exposure to manganese in F344 rats.

Concerns exist as to whether individuals may be at greater risk for neurotoxicity following increased manganese (Mn) oral intake. The goals of this study were to determine the equivalence of 3 methods of oral exposure and the rate (mg Mn/kg/day) of exposure. Adult male rats were allocated to control diet (10 ppm), high manganese diet (200 ppm), manganese-supplemented drinking water, and mangane...

متن کامل

Manganese dosimetry: species differences and implications for neurotoxicity.

Manganese (Mn) is an essential mineral that is found at low levels in food, water, and the air. Under certain high-dose exposure conditions, elevations in tissue manganese levels can occur. Excessive manganese accumulation can result in adverse neurological, reproductive, and respiratory effects in both laboratory animals and humans. In humans, manganese-induced neurotoxicity (manganism) is the...

متن کامل

Lactational transfer of manganese in rats: predicting manganese tissue concentration in the dam and pups from inhalation exposure with a pharmacokinetic model.

Manganese (Mn) is an essential element. However, excess Mn causes neurotoxicity. Fetuses and neonates have been discussed as potentially sensitive subpopulations for Mn. In the present study, a previously published physiologically based pharmacokinetic model for Mn in adult rats was extended to examine exposure conditions that could lead to increased central nervous system Mn in developing rats...

متن کامل

Tissue manganese concentrations in young male rhesus monkeys following subchronic manganese sulfate inhalation.

High-dose human exposure to manganese results in manganese accumulation in the basal ganglia and dopaminergic neuropathology. Occupational manganese neurotoxicity is most frequently linked with manganese oxide inhalation; however, exposure to other forms of manganese may lead to higher body burdens. The objective of this study was to determine tissue manganese concentrations in rhesus monkeys f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurotoxicology

دوره 23 2  شماره 

صفحات  -

تاریخ انتشار 2002